Hot-Swap Controller IC Makes Ajustable Circuit Breaker

Use of a hot-swap controller IC provides inrush-current-limiting and circuitbreaker functions for medium to high-voltage circuit protection.

Medium- and high-voltage systems that range from 9 V to 72 V often require one or more of the following circuit capabilities: hot-swap control, circuit-breaker fault protection, and inrush current limiting.

The circuit of Figure 1 provides inrush current limiting and a reliable circuit-breaker function for the load (C1 and R2), yet contains only a p-channel MOSFET, a hot-swap controller IC, and two optional resistors (R1 and R3). Adding a low-value resistor at the MOSFET drain provides an adjustable trip-point and improved accuracy over the operating temperature range (Figure 2).

Figure 1. Standard circuit-breaker application.

Figure 2. Adding a trip-point-adjust resistor (R4) to the circuit of Figure 1 improves its initial accuracy and accuracy over temperature.

For hot-swap applications, U1 limits the inrush current based on a typical gate-drive slew rate of $9 \mathrm{~V} / \mathrm{mS}$. Inrush current is given by the equation $\mathrm{I}=\mathrm{CdV} / \mathrm{dT}=\mathrm{CSR}$, where $\mathrm{C}=$ load capacitance and SR is the slew rate, set by U 1 at $9 \mathrm{~V} / \mathrm{mS}$ (typical). For a load capacitance of $100 \mu \mathrm{~F}$, the IC limits inrush current to approximately 0.9A.

U1's circuit-breaker function uses an internal comparator and the MOSFET on-resistance $\left(R_{\mathrm{DS}(\mathrm{ON})}\right)$ to sense a fault condition. ($\left.\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}\right)$ for Q1 is typically $52 \mathrm{~m} \Omega$ and U 1 has selectable circuit-breaker trip points (CB) of $300 \mathrm{mV}, 400 \mathrm{mV}$, or 500 mV . At the lowest trip point (300 mV), the CB trip current at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ is typically 5.77 A .

The circuit breaker's voltage-trip value is determined from the equation $\mathrm{V}_{\mathrm{CB}}>$ $\left(R_{\mathrm{DS}(\mathrm{ON})}\right) \mathrm{I}_{\mathrm{LOAD}(\mathrm{MAX})}$, or $\mathrm{V}_{\mathrm{CB}} / \mathrm{l}_{\mathrm{LOAD}(\mathrm{MAX})}>\left(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}\right)$.

Suppose the desired limit is 2 A. Using typical values,

$$
300 \mathrm{mV} / 2 \mathrm{~A} \approx 150 \mathrm{~m} \Omega>\left(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}\right)
$$

Instead of substituting another MOSFET with higher on-resistance, add $\mathrm{a} \approx 100 \mathrm{~m} \Omega$ resistor in series with Q1 (i.e., R4 in Figure 2). Besides allowing adjustable circuit-breaker levels, R4 provides better circuit-breaker accuracy and improved stability over temperature. For example, $\left(R_{D S(O N)}\right)$ for Q1 is $\approx 52 \mathrm{~m} \Omega$ @ $T_{J}=25^{\circ} \mathrm{C}$ and $\approx 130 \mathrm{~m} \Omega$ @ $T_{J}=125 \mathrm{C}$, a change of 150%. If you
add a $100 \mathrm{~m} \Omega$, $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ resistor (which varies by 0.001Ω from $25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$), the combined variance from $25^{\circ} \mathrm{C}(152 \mathrm{~m} \Omega)$ to $125^{\circ} \mathrm{C}(231 \mathrm{~m} \Omega)$ is only $79 \mathrm{~m} \Omega$, which is 52%.

This former Design Brief was published in the November 10, 2003 issue of $E D$ magazine.

More Information

MAX5902: QuickView -- Full (PDF) Data Sheet -- Free Samples

